Universal Schubert Polynomials
نویسنده
چکیده
The aim of this paper is to introduce some polynomials that specialize to all previously known Schubert polynomials: the classical Schubert polynomials of Lascoux and Schützenberger [L-S], [M], the quantum Schubert polynomials of Fomin, Gelfand, and Postnikov [F-G-P], and quantum Schubert polynomials for partial flag varieties of Ciocan-Fontanine [CF2]. There are also double versions of these universal Schubert polynomials that generalize the previously known double Schubert polynomials [L-S], [M], [K-M], [CF-F]. They describe degeneracy loci of maps of vector bundles, but in a more general setting than the previously known setting of [F2]. These universal Schubert polynomials possess many but not all algebraic properties of their classical specializations. Their extra structure make them useful for studying their specializations, as it can be easier to find patterns before variables are specialized. The main geometric setting to which these polynomials apply is the following. We have maps of vector bundles
منابع مشابه
Equivariant Quantum Schubert Polynomials
We establish an equivariant quantum Giambelli formula for partial flag varieties. The answer is given in terms of a specialization of universal double Schubert polynomials. Along the way, we give new proofs of the presentation of the equivariant quantum cohomology ring, as well as Graham-positivity of the structure constants in equivariant quantum Schubert calculus.
متن کاملGROTHENDIECK POLYNOMIALS AND QUIVER FORMULAS By ANDERS S. BUCH, ANDREW KRESCH, HARRY TAMVAKIS, and ALEXANDER YONG
Fulton’s universal Schubert polynomials give cohomology formulas for a class of degeneracy loci, which generalize Schubert varieties. The K-theoretic quiver formula of Buch expresses the structure sheaves of these loci as integral linear combinations of products of stable Grothendieck polynomials. We prove an explicit combinatorial formula for the coefficients, which shows that they have altern...
متن کاملSkew Schubert Polynomials
We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schub...
متن کاملSkew Divided Difference Operators and Schubert Polynomials
We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with posit...
متن کاملCombinatorial Aspects of the Cohomology and K-theory of Flag Varieties
In this talk we present some recent results related to Schubert and Grothendieck polynomials. These polynomials represent Schubert classes, which form the natural bases of the cohomology and K-theory of the complex flag variety. We present background information on several combinatorial constructions of Schubert and Grothendieck polynomials. Then we present the solution to a conjecture concerni...
متن کامل